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ABSTRACT

Hyperspectral dimensionality reduction by optimal band se-
lection attracts wide attention recently because a few pivotal
and physically meaningful bands can not only represent the
whole image cube without losing effectiveness but also mit-
igate the computational burden. In this paper, we construct
an efficient searching strategy based on the clonal selection
principle to optimize a geometry-based criterion named max-
imum ellipsoid volume (MEV). The main contributions are
two-fold: 1) a subtle relationship that can accelerate the cal-
culation of the criterion and 2) an evolutionary strategy to re-
lieve the heavy computational burden of obtaining the desired
bands from numerous quality candidates. The experimental
result on a real hyperspectral data demonstrates that the pro-
posed method is effective.

Index Terms— Band selection, hyperspectral image,
maximum ellipsoid volume, clonal selection principle.

1. INTRODUCTION

In the past two decades, hyperspectral remote sensing has be-
come the forefront technology in the field of remote sens-
ing. The spectral resolution of hyperspectral image (HSI)
can reach 0.01 µm, providing the potential of accurate ob-
ject identification [1] and detection [2]. Nevertheless, the vast
volume of data leads to high storage and transmission costs
and a heavy computational burden. Band selection (BS), se-
lecting only a few bands with discriminative information, is
an appropriate approach to cope with the problem.

These years, considerable research efforts have been de-
voted to BS. As a result, a large number of BS methods have
been proposed. According to whether the methods make
use of the class label of training samples or not, they can be
roughly categorized into supervised [3, 4] and unsupervised
methods [5]. Owing to the difficulty of obtaining labeled
samples, we focus on unsupervised methods, further cate-
gorized into four types: ranking-based methods, clustering-
based methods, greedy-based methods and evolutionary-
based methods in [6]. Some typical works are listed as
follows. Based on the eigenvalues and eigenvectors of the

variance-covariance matrix, the maximum-variance principal
components analysis (MVPCA) [7] method constructs the
loading-factors matrix for band prioritization. After prioritiz-
ing all bands, it employs a divergence-based band decorre-
lation method to remove redundant bands. Clustering-based
band selection (CBBS) [8] utilizes information measures,
such as mutual information and Kullback-Leibler divergence,
to construct a dissimilarity matrix, after which Ward’s linkage
method is applied to the matrix to get the required number of
clusters. Volume-gradient-based band selection (VGBS) [9]
greedily removes redundant bands in the light of the gradient
of volume with regard to HSI and eventually gets the bands
with large volume of the ellipsoid [10]. In [11], band selec-
tion is transformed into a multitask sparse learning problem.
Candidate band subsets evaluated by the introduced criterion
are searched based on immune clonal strategy [12].

Briefly speaking, band selection aims to choose k out of
L bands in a HSI, which surpasses all the other combinations
in term of some specific criterion. Given a proper criterion,
there are CkL = L!

k!(L−k)! candidate combinations. Assuming
L = 200, k = 15, CkL is approximately 1.46× 1022. Hence,
an exhaustive search is negated in respect of computational
complexity, as a consequence of which it is almost impossi-
ble to achieve the optimal band subset corresponding to the
adopted objection function. In this situation, researchers have
to turn to the suboptimal solution.

In this paper, we propose an unsupervised hyperspec-
tral band selection called MEV-IC, which employs a novel
evolutionary-based stategy to find the band subset with max-
imum ellipsoid volume (MEV), a geometry-based criterion.
The two contributions of this paper are claimed in the follow-
ing. First, we find a subtle relationship between the k × k
variance-covariance matrix associated with a specific k-band
subset and the L × L variance-covariance matrix associated
with all bands, which speeds up evaluations of possible sub-
sets. Second, we design an evolutionary searching strategy
which can reliably and quickly search for the desired band
subset from gazillions of possible solutions on the basis of
the clonal selection principle.
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2. BACKGROUND

In this section, we will review the MEV method [10] initially
designed for multispectral images.

From geometric perspective, it’s universally known that
the variance-covariance matrix associated with a specific
k-band subset defines an ellipsoid within the k-D subspace
spanned by the k bands. The ellipsoid volume of a k-band

subset is π
k
2

Γ( k
2 +1)

k∏
i=1

√
λi, where

√
λi, for each 1 ≤ i ≤ k,

is the corresponding principal axis of the ellipsoid and Γ(·)
is the gamma function. Furthermore, the product of the prin-
cipal axes of the ellipsoid is equal to the square root of the
determinant of the corresponding k × k matrix. Therefore,
the volume of the ellipsoid associated with a specific k-band
subset and the square root of the determinant of the k × k
variance-covariance matrix of that subset differ by a constant
multiple. In [10], Sheffield proved that the joint entropy for
data with multivariate Gaussian distribution equals to half
the logarithm of the variance-covariance matrix determinant
except for an additive constant. Accordingly, selecting the
k-band subset with MEV is exactly equivalent to selecting the
k-band subset with maximum joint entropy.

However, the MEV method can’t be directly applied in
HSIs owing to an extreme number of possible combinations.

3. METHOD

This section details the proposed MEV-IC method for unsu-
pervised band selection. First, the relationship between the
k × k variance-covariance matrix associated with a specific
k-band subset and the L × L variance-covariance matrix as-
sociated with all bands is further analyzed. Then, a compu-
tationally feasible evolutionary search strategy is constructed
in order to efficiently obtain the desired band subset from an
excess of trillions of candidates.

3.1. Subtle relationship

For convenience, a centralized and normalized HSI cube with
a total of L bands is denoted as X = [x1,x2, . . . ,xL]T ∈
RL×N , where xi ∈ RN describes the i-th spectral band with
N pixels. Then an examined k-band subset can be denoted
by M = [xi1 ,xi2 , . . . ,xik ]T ∈ Rk×N , 1 ≤ i1 < i2 <
· · · < ik ≤ L, where k is the number of selected bands.
Further, the variance-covariance matrices associated with all
bands and the k-band subset can be expressed as follows:

D = MMT = [xi1 ,xi2 , . . . ,xik ]T ([xi1 ,xi2 , . . . ,xik ]T )T ,
(1)

and

B = XXT = [x1,x2, . . . ,xL]T ([x1,x2, . . . ,xL]T )T , (2)

respectively. For each pair of m and n s.t. 1 ≤ m ≤ n ≤ k,

D(m,n) = xTimxin = B(im, in). (3)

According to (1), (2) and (3), D can be formed by the i1-th,
i2-th, . . ., ik-th rows and the i1-th, i2-th, . . ., ik-th columns
of B, namely that we obtain the variance-covariance matri-
ces associated with all the possible band combinations as
long as the variance-covariance matrix B is calculated, which
saves computation time for calculating the determinant of the
variance-covariance matrices associated with the quality band
combinations.

3.2. Computationally feasible evolutionary strategy

As analyzed in [13], some greedy search strategies such
as forward selection and backward elimination can quickly
achieve a solution at the cost of the accuracy. However,
the solution is poor globally. Fortunately, for such a spe-
cific combinatorial optimization problem, the clonal selection
algorithm [12] can provide us with a high-quality solution
owing to its superb global searching ability. Therefore, we
reformulate the clonal selection algorithm to search for the
band subset with MEV.

The clonal selection algorithm is motivated by the clonal
selection theory that explains how antibody-forming cells re-
act to specific invading antigens and destruct them. In detail,
when a body is invaded by an antigen, the original antibody-
forming cells of the body produce sufficient antibodies of
different affinities to interact with the antigen. Then those
antibody-forming cells producing antibodies with high affini-
ties survive, proliferate in proportion to their affinities and
mutate stochastically. The process will be repeated until the
antibody with desired affinity can be produced. Therefore, the
body can form an effective defense against the antigen. Sim-
ilarly, the combinatorial optimization problem for selecting
the band subset with MEV is regarded as the antigen while the
chosen band subset is treated as the antibody. It is noteworthy
that the antibody-forming cell as the intermediary is removed
for simplification. Further, the affinity of an antibody can be
defined by the opposite of the function below:

F (M) =
1√

Det(D)
=

1√
Det(MMT )

. (4)

This function can be interpreted as the reciprocal of the square
root of the variance-covariance matrix associated with the ex-
amined k-band subset. Noting that each M is a k-subset of
X, we can specify it merely by a k-D integer vector in imple-
mentation, which indicates which columns of X are selected.
Last but not least, a smaller value of F (·) leads to a better
combination.

The clonal selection principle can be summarized as
population diversity, genetic mutation and natural selection.
First, we set the population size N0 of the initial antibodies S
heuristically as 13 and select N0 different k-band subsets at
random. Second, each M in S produces NC(M) copies and
all the copies should mutate stochastically to new antibodies.
It should further be noted that a hash map is supplemented to

4698



avoid the repeated antibodies. Third, among the new antibod-
ies produced in the last step, the only one with minmum F (·)
value is compared to M, and then if its F (·) value is smaller
than M’s, it will replace the original M in the next iteration;
otherwise, it will be discarded. In this paper, NC(M) is
determined by

NC(M) = Fac× Ceil(min(2,
F (M)

Q
)), (5)

where Fac is a starting variation coefficient fixed to 10,
Ceil(·) the round-up function and Q the minimal F (·) value
of all the antibodies in S. Moreover, the maximum number
of iterations is set as 650. Only if the relative change rate of
the smallest F (·) value in the last 100 steps drops to below a
predefined threshold 10−6 will the updating procedure stop
ahead of time.

3.3. Flowchart of MEV-IC

The proposed MEV-IC algorithm is sketched in pseudocode
form in Algorithm 1.

Algorithm 1 The MEV-IC algorithm
Input: The observed HSI X = [x1,x2, . . . ,xL]T and the
number of selected bands K.
Preprocessing: Normalize X between 0 and 1 and re-
move the mean of each hyperspectral band xi. For con-
venience, the mean-shifted data is still denoted as X =
[x1,x2, . . . ,xL]T .
Randomly choose the initial antibodies S of size N0 and
calculate their F (·) values.
repeat

Clone: Each antibody in S is cloned proportionally to
its F (·) value.
Mutation: All the antibodies produced in the above step
mutate independently and stochastically to generate new
antibodies.
Selection: Compare each antibody M in S to the an-
tibody with minmum F (·) value among the antibodies
generated form M and reserve the antibody with smaller
F (·) value.

until The maximum number of iterations is reached or the
relative change rate of the smallest F (·) value in the last
100 steps drops to below 10−6.
Output: The antibody (desired band subset) with the
smallest F (·) value.

4. EXPERIMENT

4.1. Experimental Settings

In order to verify the effectiveness of the MEV-IC algorithm,
we conduct experiments on Pavia University, a widely used

Table 1. The ratios of the determinant Det of the variance-
covariance associated with the bands selected by VGBS to
that by MEV-IC

Number
of selected
bands (k)

3 6 9 12 15 18 21 24 27 30

Ratio (%) 60.4 79.1 67.5 58.1 53.2 49.6 41.4 38.0 41.5 27.8
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Fig. 1. OA curves on Pavia University for different band se-
lection methods.

HSI captured by ROSIS system in 2002, which consists of
103 hyperspectral bands with 12 non-informative bands re-
moved, each containing 610 × 340 pixels. In addition, there
are 9 classes of available objects in the image. First of all,
MEV-IC is compared with VGBS [9] in term of determinant
Det because it adopts the same criterion as MEV-IC. Further-
more, in HSI classification, several representative competitors
are taken as benchmarks: clustering-based band selection us-
ing mutual information (WaLuMI) or Kullback-Leibler diver-
gence (WaLuDi), uniform band selection (UBS) [7], VGBS
[9] and MTSP [11]. What’s more, four commonly used classi-
fiers are employed to perform the classification: support vec-
tor machine (SVM), linear discriminant analysis (LDA), k-
nearest neighborhood (KNN), and classification and regres-
sion trees (CART). Besides, we take 10% samples for each
class at random as the training dataset and the rest as the test
dataset.

4.2. Experimental Result and Discussion

According to Table 1, the determinant Det of the variance-
covariance associated with the bands selected by MEV-IC is
much greater than that by VGBS, which implies that when we
take MEV as the objective function, MEV-IC can find better
solutions than VGBS.
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Table 2. Average classification accuracies on Pavia Univer-
sity Scene by four different classifiers.

KNN LDA SVM CART Mean

UBS 0.8395 0.8019 0.8938 0.8169 0.8380
VGBS 0.8315 0.7997 0.8944 0.8279 0.8384
MTSP 0.8457 0.7877 0.8831 0.8066 0.8308
WaLuDi 0.8365 0.7975 0.8886 0.8147 0.8343
WaLuMI 0.8315 0.7986 0.8886 0.8146 0.8333
MEV-IC 0.8363 0.8011 0.8967 0.8314 0.8414

Fig. 1 illustrates the overall accuracy (OA) values of four
different classifiers. Except for the KNN classifier, the pro-
posed MEV-IC method performs the best in most cases. In
addition, Table 2 shows the accuracy results of four differ-
ent classifiers. (The best and second-best results in each row
are highlighted in bold and underlined, respectively. ) As for
the mean of the accuracy results of four different classifiers
(namely the last row in the Table 2), MEV-IC takes over the
lead, followed by VGBS, clarifying that MEV-IC can select
bands with low correlation. UBS takes the third place due to
the low correlation of the uniformly selected bands. When
the KNN classifier is employed, MEV-IC do not perform well
while MTSP outperform other competitors. That is because
the KNN classifier is too sensitive to noise and MTSP succeed
to avoid selecting the bands carrying some noise. Moreover,
MEV-IC achieves the best or second-best classification results
except for the KNN classifier, which further verifies the effec-
tiveness of MEV-IC.

In conclusion, our MEV-IC method is more effective than
the compared methods.

5. CONCLUSION

In this paper, an evolutionary-based unsupervised hyperspec-
tral band selection is proposed. We first discover the variance-
covariance matrix associated with a specific band subset is the
submatrix of the variance-covariance matrix associated with
all bands, which accelerates the calculation of the criterion.
Then we construct a computationally feasible evolutionary
search strategy which relieves the heavy computational bur-
den of obtaining the desired bands based on the clonal selec-
tion principle. The result of a real HSI data experiment clearly
demonstrates the proposed MEV-IC method is effective and
accurate.
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